

Sounding Rocket Program Update to the Heliophysics Subcommittee

July 2, 2012

C. Yuhas

Sounding Rocket Program

- Heliophysics FY12 Suborbital Missions Update
- Program Implementation Status
 - 2012 launch schedule
 - Range Updates
 - Motor Status
- Peregrine Motor Development

Heliophysics Suborbital Missions Update

- Heliophysics Rockets Launched in FY2012
 - CHAMPS (Charge and Mass of Meteoritic Smoke Particles); Oct 12 & 13, Andoya.
 - MICA (Magnetosphere-Ionosphere Coupling in the Alfven resonator), Feb 19,
 Poker Flat
 - ATREX (Anomalous Transport Experiment), March 27, Wallops
 - SDO/EVE Calibration, June 23, WSMR
- Upcoming Rocket Missions
 - SUMI (Solar Ultraviolet Magnetograph Investigation), July 5, WSMR
 - Hi-C (High Resolution Coronal Imager), July 11, WSMR
 - DFS (Degradation Free Spectrometers for Solar Physics), July 24, WSMR
 - EVEX (Equatorial Vortex Experiment), September, Kwajalein
 - EUNIS, FOXSI, VERIS, RAISE, Aug-Oct, WMSR

Other Suborbital Missions

- GRIPS (Gamma Ray Imager/Polarimeter for Solar Physics); delayed by PI, working with Balloon Program for next launch opportunity.
- BARREL (Balloon Array for RBSP Relativistic Electron Losses); on track for Antarctic deployment this fall.

ATREX Mission, March 27, 2012: 5 rockets in 5 minutes

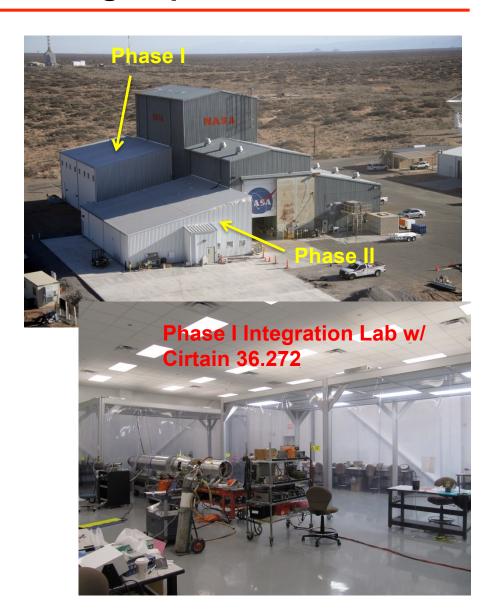
Time Lapsed Launch Sequence

Multiple Downrange Clouds

FY12 Sounding Rocket Schedule

Combined flights supporting a single scientific study

			E) (00 (0			_									_
			FY 2012	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Se
#	Vehicle Type		Experimenter												
			WALLOPS ISLAND												
1	Test Vehicle		Terrier-MalemuteHALL/NASA-WFF				- A Sı	iccess	3						
2	Terrier Malemute	46.002 UE	ATREX-LARSEN/CLEMSON UNIVERSITY							\neg					
3	Terrier Oriole	45.004 UE	ATREX-LARSEN/CLEMSON UNIVERSITY												
4	Terrier Orion	41.097 UE	ATREX-LARSEN/CLEMSON UNIVERSITY								uccess				
5	Terrier Orion	41.098 UE	ATREX-LARSEN/CLEMSON UNIVERSITY												
6	Terrier Orion	46.003 UE	ATREX-LARSEN/CLEMSON UNIVERSITY							IJ					
8	Terrier Orion	41.101 UO	RockOn-KOEHLER/UNIV OF COLORADO												
9	Test Vehicle	12.075 GT	Talos-Terrier-Oriole/BRODELL/NASA-WFF									△			
10	Terrier Malemute	46.004 GO	ROSANOVA/NASA-WFF										∕ 3-z	\triangle	
			WSMR												
11	Black Brant IX	36.225 UG	PICTURE-CHAKRABARTI/BOSTON UNIV	▲ Fa	ilure (A	ntenr	a che	ater r	elav)						
12	Black Brant IX	36.264 UH	XQC-MCCAMMON/UNIV. OF WISCONSIN	a				optic							
13	Black Brant IX	36.274 UH	EXOS-CASH/UNIV. OF COLORADO		_ ai	Suc	100 UI	ι οριιο	,3						
14	Black Brant IX	36.271 UG	SLICE-BEASLEY/UNIVERSITY OF COLOR	ADO		ouc	00033	\triangle To	FY13						
15	Black Brant IX		FOXSI-KRUCKER/UNIV. OF CA @ BERKLI				Δ								
16	Black Brant IX	36.268 UG	FORTIS-MCCANDLISS/JHU				<u></u>							-	
17	Black Brant IX	36.277 UG	CIBER-BOCK/CAL TECH						- 📤	3rd co	mbust	ion ins	stabili	itv	
18	Black Brant IX	36.261 UG	VeSpR-CLARKE/BOSTON UNIVERSITY					\triangle			Nov 2		, cabiii	· y	
19	Black Brant IX		IMAGER-COOK/BOSTON UNIVERSITY						<u> </u>					-/\	
20	Black Brant IX		HYPE-HARRIS/UNIV OF CALIFORNIA, DAV	'IS					Dela	ved to	Jan2	013			
20A	Black Brant IX	36.286 UE	EVE-Woods/UNIV OF COLORADO							,					
	Black Brant IX		EUNIS-RABIN/NASA-GSFC							△		-=-		- 🛆	
21	Black Brant IX	36.253 US	RAISE-HASSLER/SWRI							<u> </u>			4 oŦ	1ov20	12
22	Black Brant IX	36.239 DS	VERIS-KORENDYKE/NRL								<u> </u>			-/	
	Black Brant IX		SUMI-CIRTAIN/MSFC									<u> </u>	/		
	Black Brant IX		Hi-C-CIRTAIN/MSFC										- 🔼		
25	Black Brant IX		DFS-JUDGE/USC									入	$-\overline{\wedge}$		
26	Black Brant IX		ACCESS-KAISER/JHU								То	Feb 2	013		
											10	1 60 2	013		
			PFRR												
27	Black Brant IX	36.273 UE	MICA-POWELL/CORNELL UNIVERSITY					▲Su	ccess						
			NORWAY												
28	Terrier Orion	41.093 UE	CHAMPS-Robertson/University of Colorado	A S	ucces	S									
20	Terrier Orion		CHAMPS-Robertson/University of Colorado	A S	ucces	c									


FY12 Sounding Rocket Schedule

			FY 2011	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
#	Vehicle Type		Experimenter							i i					
			KWAJALEIN												
	Terrier Malemute		EVEX-KUDEKI/UNIVERSITY OF ILLINOI												\triangle
	Terrier Oriole		EVEX-KUDEKI/UNIVERSITY OF ILLINOI	S											
	Terrier Orion		CATON/USAF												\triangle
33	Terrier Orion	41.102 DR	CATON/USAF												\triangle
			REIMBURSABLE MISSIONS												
35	Black Brant XI	41.102 DR	IRVEIII-CHEATWOOD/NASA-LARC							△			-		
													i		
															6

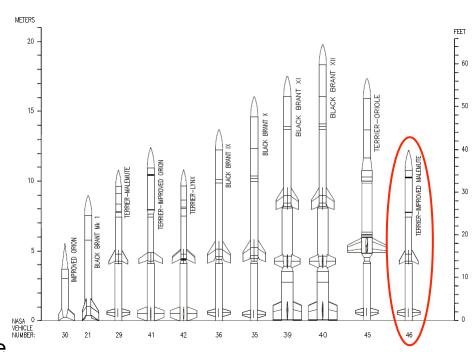
Sounding Rockets Range Updates

- White Sands Missile Range, New Mexico
 - LC-35/LC-36 consolidation to be complete this fall
 - New integration lab (Phase I) is up and running – two solar missions presently in integration
 - Cirtain 36.272 and 36.284
 - PI's are very pleased with new facility "vast improvement"
 - Phase II construction 95% complete
 - NASA walk through conducted last week
 - Phase III (final) is 50% complete
 - TM ground station consolidation

Sounding Rockets Range Updates

- Poker Flats Research Range, Alaska
 - Environmental Impact Statement on track for public release this fall
 - Expect to be at HQ for review mid-July
 - Public meetings will be held in Fairbanks and Anchorage this fall
 - Great cooperation with USFWS, BLM
 - Range ready to support 40.027 Rowland this winter (February)
 - Return of Black Brant XII to flight status
- Reagan Test Site, Kwajalein Atoll
 - Team there now installing launcher for campaign this September
 - Optimistic we can make this a routine "equatorial" launch site from both technical and cost perspectives
- Woomera Test Range, South Australia
 - In discussions via HQ with Australian officials about making NASA a "noncommercial" launch operator
 - Plans for a 2014 or 2015 campaign in early stages but appear feasible assuming gov't to gov't agreements are in place

Surplus Motors


 Added Terrier-Improved Malemute to vehicle stable. Test Flight Jan 2012, first use in ATREX, March 2012.

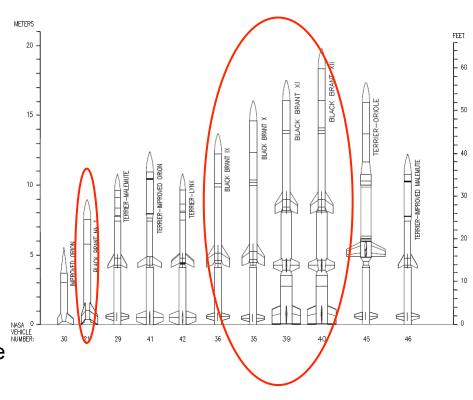
Brant Motors

In flight-status, but technical issues continue.

Oriole Motors

- 6 Oriole motors have been added to inventory as Brant alternative.
- Length-to-Diameter ratio results in lower vehicle stability than Brant; reduces the spectrum of payload configurations that can be accommodated.
- Composite casing is less robust and more vulnerable to logistic and operating conditions.
- First use in ATREX mission demonstrated residual thrust; potential for motor to overtake payload in some configurations.
- Test flight of Talos-Terrier-Oriole this summer.

Surplus Motors


 Added Terrier-Improved Malemute to vehicle stable. Test Flight Jan 2012, first use in ATREX, March 2012.

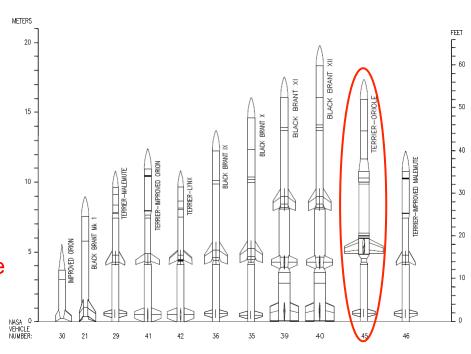
Brant Motors

 In flight-status, but technical issues continue, more information to follow.

Oriole Motors

- 6 Oriole motors have been added to inventory as Brant alternative.
- Length-to-Diameter ratio results in lower vehicle stability than Brant; reduces the spectrum of payload configurations that can be accommodated.
- Composite casing is less robust and more vulnerable to logistic and operating conditions.
- First use in ATREX mission demonstrated residual thrust; potential for motor to overtake payload in some configurations.
- Test flight of Talos-Terrier-Oriole this summer.

Surplus Motors


 Added Terrier-Improved Malemute to vehicle stable. Test Flight Jan 2012, first use in ATREX, March 2012.

Brant Motors

In flight-status, but technical issues continue.

Oriole Motors

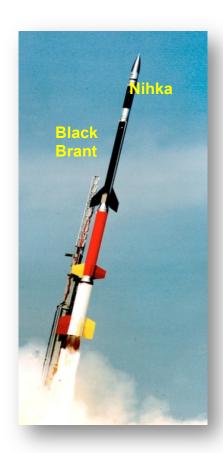
- 6 Oriole motors have been added to inventory as Brant alternative.
- Length-to-Diameter ratio results in lower vehicle stability than Brant, and composite casing is less robust and more vulnerable to logistic and operating conditions; this reduces the spectrum of payload configurations that can be accommodated.
- First use in ATREX mission demonstrated residual thrust; potential for motor to overtake payload in some configurations.
- Test flight of Talos-Terrier-Oriole this summer.

Black Brant Motors

- Technical Issues with Mark 1 motor since introduction in 2005: igniter, casing test failures (resolved); combustion instability (mitigate & watch), unusual dynamics (unresolved).
- Combustion Instability:
 - 3 of the last 30 BB launches have experienced combustion instability, causing 2 mission failures due to excessive vibration. Biggest concern is safety, since high vibrations could damage or disable the FTS (WSMR).
 - Mitigation: throat enlargement, US ammonium perchlorate, flight rules allows FTS initiation at first sign of instability.

– Unusual Dynamics:

- Excessive nozzle erosion, regressive chamber pressure profiles, flight dynamics that can introduce unsafe flight trajectories to upper stages.
- Bristol investigated alternative propellant mix methods, nozzle & exit cone designs, alternative suppliers.
- Terrier-Brant (BBIX) authorized to fly based on multiple safety analyses; moratorium in place on other Brant configurations.

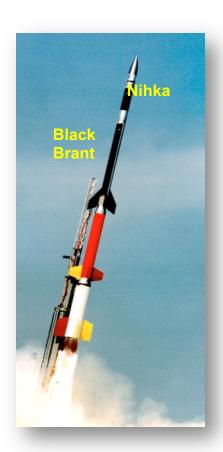

Black Brant XII: Talos-Taurus-Brant-Nihka

Recent Performance (June 23 flight):

The first flight of the BB Mk2 Version I motor (hybrid 4140/4335 steel case with US manufactured WECCO ammonium perchlorate propellant) was conducted with the 36 286/Woods mission from WSMR on June 23

- No signs of anomalous flight behavior
- Accelerometer and roll rate data looked nominal with no signs of combustion instability
- Motor hardware was recovered and aft end insulation was in better condition than other MK1 motors (excepting the Combustion Instability occurrences)
- Aft carbon phenolic exhibited reduced throat erosion that was more uniformly distributed around the perimeter with approximately 1/2" material remaining in the area of maximum erosion (good margin)
- Results indicate that the US AP is burning more efficiently causing less erosion with performance characteristics more similar to the old Brant design

Black Brant XII: Talos-Taurus-Brant-Nihka



Black Brant Motors

- Inventory Status:
 - Bristol Aerospace is currently maintaining schedule for delivery of Black Brant rocket motors.
 - We now have 14 motors total in stock at various locations and conditions, a record number for recent history!
 - Three motors cannot be flown at WSMR due to high-end burn rates
 - Various levels of work needs to be done on some other motors (x-ray, throat boring, etc.)
 - 14 missions are currently on schedule for remainder of CY;
 Dynamics in launch dates, uncertainties in access to x-ray facilities, and final motor delivery schedules make it difficult to know if missions will be impacted

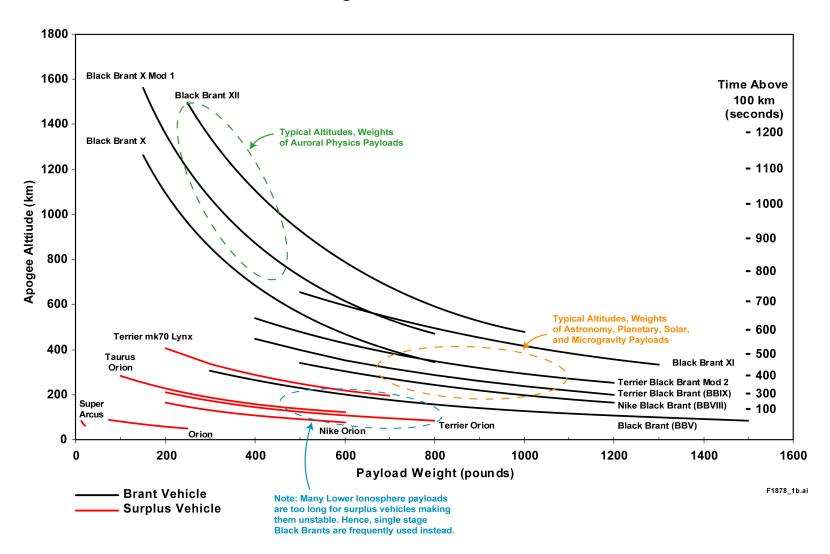
Flight Termination Systems

- New FTS delivered and in use at WSMR.
- NICAD battery supplier 'vanishing vendor' is a risk item; alternate batteries have been ordered from multiple new vendors and are being qualified for use in FTS.

Black Brant XII: Talos-Taurus-Brant-Nihka

Peregrine Motor Development

- SMD has initiated a development project of a purpose-built sounding rocket sustainer motor using an approach where the government collaborates with industry to generate a build-to-print system that can be produced by multiple vendors.
- Objective of the Peregrine Motor Project is to provide a reliable, affordable alternative to the Brant and Oriole motors.
- SMD has partnered with NASA's Office of Chief Engineer and the Office of the Chief Technologist, because of compatible objectives: workforce development (OCE) and flights of opportunity for technology demonstration payloads (OCT).
- 18-month development schedule for detailed design, manufacture, 1 static firing test, and 3 test flights.
- Status: Preliminary design reviews completed March 2012; proposals for casing and casting of motors are in evaluation. First test flight in summer 2013.

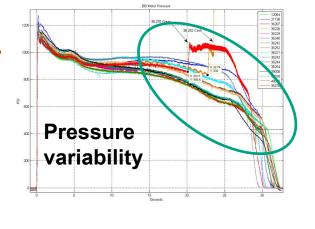


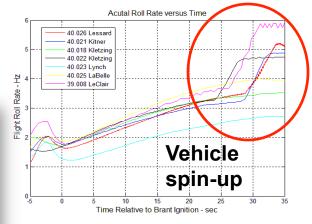
Backup

Suborbital Observing Capabilities: Sounding Rockets

NASA Sounding Rocket Vehicle Performance

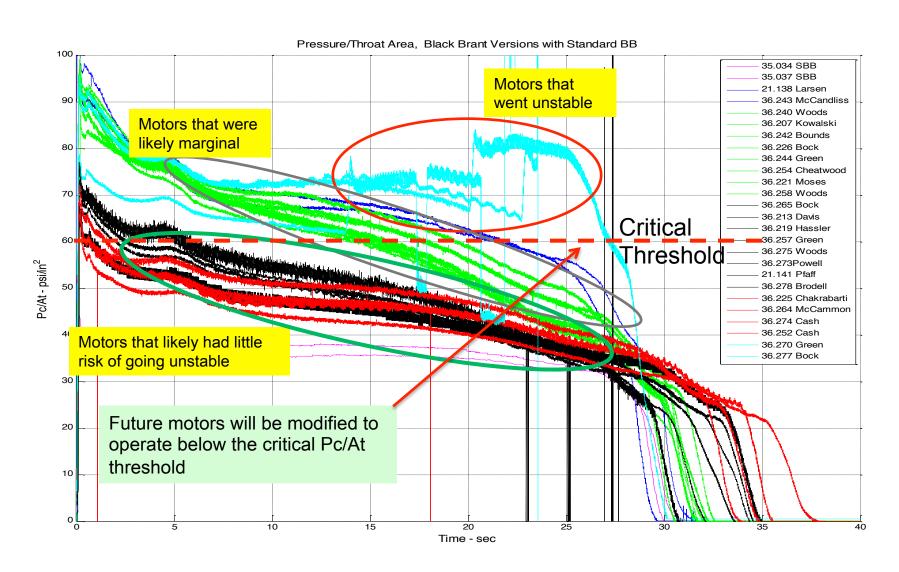
Summary of Need for "Purpose-build" Sounding Rocket Motor


- The sounding rocket program attempts to use surplus military rocket motors as much as possible, but must rely on commercial motors to fulfill some critical applications
 - Limited budget means that low-cost assets are critical to the continued success of the program
- Industry dynamics have lead to a "single source vendor" situation that has adversely affected the program
 - Reduced corporate responsiveness exists under the current situation
 - Limited production capacity has made it impossible to rebuild inventory that enables program agility (thus a hallmark of the program has been lost)
- Existing US solid propellant rocket motors are not ideal for NASA Sounding Rocket Applications
 - Higher cost associated with the existing options is inconsistent with the low-cost nature of the NASA sounding rocket program
 - Adopting a radically different propulsion system or vehicle philosophy could require wholesale redevelopment of significant program assets
- Emerging commercial reusable vehicle companies can not currently satisfy the extensive requirements of the scientific community needing access to sub-orbital space flight
- A NASA-owned, non-proprietary design will allow the SRPO to efficiently and cost effectively incorporate design changes and enhancements as required by the program



Ongoing Brant Issues

- Igniter design deficiencies
- Black Brant inconsistent performance and thrust profile variability
- Combustion instabilities
- Excessive throat erosion and associated dynamics
- Motor casing test failures
- Suspect Ammonium Perchlorate
- Redesignated as 1.2 explosive
- Delivery delays
- Single source vendor
- Foreign vendor
- Reduced Bristol expertise



BBIX Throat erosion

Some of these issues have been rectified and some are still on-going

Black Brant Rocket Motors

Peregrine Status

- Request for Proposals for demonstration propulsion unit fabrication (Case, Cast, and Combined) went out to bidders on 5/1/12
- Proposals have been received and are being evaluated
 - Questions/clarification request(s) provided to proposers by 6/7/12
 - Selection and contract award planned to occur by end of June
 - Proposal cost and schedule input will firm project direction
- Engineering Project Review Board (EPDR) meeting was conducted on 5/18/12 and top risks identified
- Requirements Definition Meeting (RDM) for the three test flight payloads was conducted on 5/18/12
- Additional near-term activities
 - Complete five gallon mix propellant characterization
 - Mechanical properties at hot/cold temperatures
 - Burn rate characteristics at hot/cold temperatures
 - Static test 10 lb thrust test motors (4)
 - Prototype igniter case fabrication to be completed by NSROC in June
 - Complete design/analysis on tailcan and fins
 - Develop environments prediction(s) to support FTS approach
 - Complete Design and Analysis Cycle (DAC)-1 final report

Outreach:

- 1. Wallops Rocket Academy for Teachers and Students (WRATS)
 - a. Lessons and activities being refined
 - b. Workshop starts on June 18

- a. WFF payload system integration and test underway
- b. Workshop starts June 17
- c. Launch set for ~6AM on June 21

Sounding Rockets: Significant Progress

Magnetosphere-Ionosphere Coupling in the Alfven resonator (MICA), PI: Powell/Cornell, Poker Flat

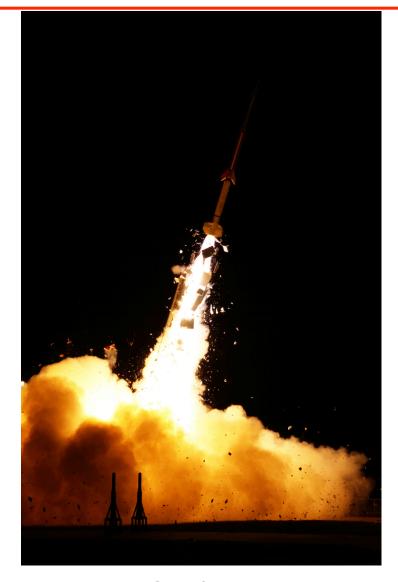
- Launch window opened Feb. 13 with launch occurring on Feb. 19
- Mother / Daughter payload configuration measured electric fields generated by the aurora and electrons and ions interacting with the Earth's magnetic field
- Launch vehicle spin rate was lower than planned
 - This contributed to increased coning
 - One set of booms did not fully deploy as planned but still collected good science data
 - Both items are under investigation
- Principal Investigator has stated the mission achieved the Comprehensive Success Criteria
- Cosmic Infrared Background Experiment (CIBER) from WSMR, Mar 21(PI: Bock/JPL); re-scheduled from Feb 24 to re-verify fin settings.
- Focusing Optics X-ray Solar Imager (FOXSI) from WSMR, March (PI: Krucker/Berkeley); indefinitely delayed following damage to detectors during I&T.
- Venus Spectral Rocket (VeSpR) from WSMR, (PI: Clarke/Boston U);
 PI missed March launch slot; re-assigned FORTIS slot in April.
- Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS), PI: McCandliss/JHU; PI unable to make April slot; SRPO negotiating with WSMR for new slot.

MICA launch from Poker Flat, Feb 19)

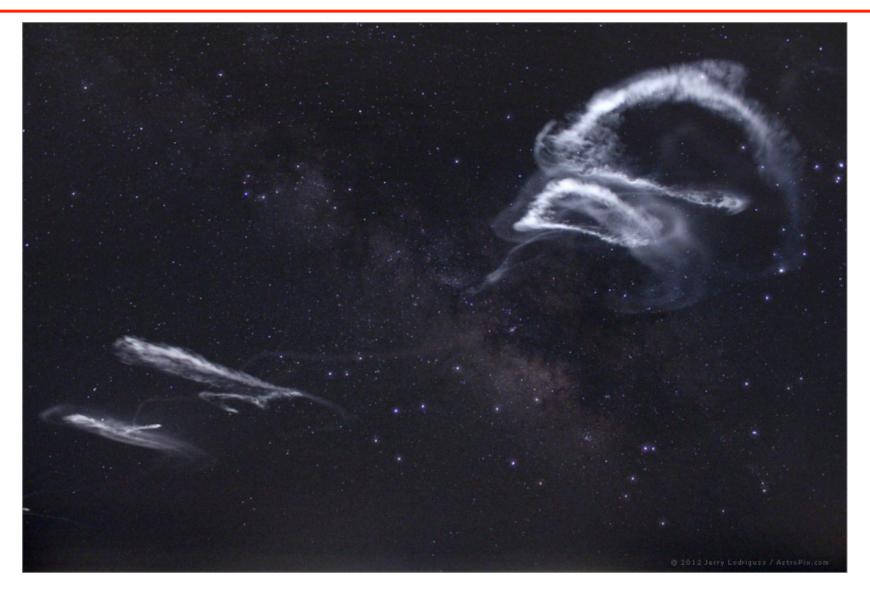
Sounding Rockets: Significant Progress

Anomalous **Tr**ansport **EX**periment (ATREX) **Launch Operations**:

- PI: Larsen/Clemson University
- Science objective is to study ultra-high-altitude winds in the thermosphere and their connection to the electrical current patterns that surround Earth.
- Launch window is March 14 through April 4, 11pm 6am.
- Five rockets launched during a five minute window. First science use of Terrier-Oriole and Terrier-Improved Malemute vehicles.
- All payloads have chemical releases and some have instrumentation
- Accurate collinear and vertical placement of all chemical releases with simultaneous visibility from three camera viewing locations is required (New Jersey, Virginia, & North Carolina)
- Launch conditions require clear, moonless skies from all 3 camera sites.


Launch Profile Overview

Launch Rehearsal March 15



Boxed Rockets

Out of the Box!!!

Rocket Trails in the Milky Way, Photo courtesy of J. Lodigruss